EMC CCB review RUC upgrade – Sept08

NOAA/ESRL/GSD/AMB

Stan Benjamin
Steve Weygandt
Bill Moninger
John M. Brown
NCEP/EMC — Geoff Manikin

Major transitions:

RUC13 change package

 radar reflectivity
 assimilation, TAMDAR,
 mesonet, model
 physics – radiation,
 convection, LSM

RUC Upgrade at NCEP

RUC 13 change package

- Components
 - Assimilation of new obs radar reflectivity, TAMDAR wind/ temp/RH, mesonet winds
 - Improved surface, precip, reflectivity forecasts
- Status
 - in real-time parallel testing at NCEP (since Aug 2007)
 - Retrospective tests not easy with addition of radar reflectivity data

NCEP RUC parallel web site:

http://www.emc.ncep.noaa.gov/mmb/ruc2/para

Comparisons between para and oper RUC

Changes for oper RUC upgrade

- Assimilation
 - Use of radar reflectivity in diabatic DFI in RUC model (also, hydrometeor assimilation component)
 - Mesonet winds using mesonet station uselist
 - TAMDAR aircraft observations (TAMDAR impact parallel RUC tests at GSD)
 - Higher obs error for moisture, wind observations
- Model physics
 - RRTM longwave radiation eliminates sfc warm bias
 - Mod to Grell-Devenyi decrease areal coverage
 - Mods to RUC land-sfc model
 - fresh snow density nighttime temps over snow cover
 - limit on melting rate- allows warmer 2m temps
- Post-processing
 - add reflectivity fields, fixed land-sfc fields (as in NAM, GFS)
 - improved RTMA downscaling

Changes for oper RUC upgrade

Assimilation

- Use of radar reflectivity in diabatic DFI in RUC model (also, hydrometeor assimilation component)
- Mesonet winds using mesonet station uselist
- TAMDAR aircraft observations (TAMDAR impact parallel RUC tests at GSD)
- Higher obs error for moisture, wind observations

Model physics

- RRTM longwave radiation eliminates sfc warm bias
- Mod to Grell-Devenyi decrease areal coverage
- Mods to RUC land-sfc model
 - fresh snow density nighttime temps over snow cover
 - limit on melting rate- allows warmer 2m temps

Post-processing

- add reflectivity fields, fixed land-sfc fields (as in NAM, GFS)
- improved RTMA downscaling

Scientific results

- ESRL/GSD ongoing RUC parallel cycle with full radar reflectivity since March 2007
- EMC ongoing parallel cycle since Aug 2007.
 Radar reflectivity availability became more reliable in Feb 2008

Following multi-month comparisons

- Bak20
 - parallel RUC at GSD using same code in parallel RUC testing at EMC
 - 13km RUC output interpolated to 20km
- Ops 20
 - operational RUC
 - 13km RUC output interpolated to 20km

Parallel test results

Bak20-Op20 rgn0, winds rms 9h fcst 2008-03-01 thru 2008-05-09 (matched)
 Bak20 rgn0, winds rms 9h fcst 2008-03-01 thru 2008-05-09 (matched)
 Op20 rgn0, winds rms 9h fcst 2008-03-01 thru 2008-05-09 (matched)

- 9h wind forecast
- Bak20 parallel RUC at GSD using same code in testing at EMC

Parallel test results – 9 h temperature

Bak20-Op20 rgn0, temperature rms 9h fcst 2008-03-01 thru 2008-05-09 (m
 Bak20 rgn0, temperature rms 9h fcst 2008-03-01 thru 2008-05-09 (matched
 Op20 rgn0, temperature rms 9h fcst 2008-03-01 thru 2008-05-09 (matched

- 9h temp forecast
- Bak20 parallel RUC at GSD using same code in testing at EMC

Parallel test results – 0 h RH

Bak20-Op20 rgn0, humidity rms 0h fcst 2008-03-01 thru 2008-05-09 (matched)

Bak20 rgn0, humidity rms 0h fcst 2008-03-01 thru 2008-05-09 (matched)

Op20 rgn0, humidity rms 0h fcst 2008-03-01 thru 2008-05-09 (matched)

- 0h RH analysis
- Bak20 parallel RUC at GSD using same code in testing at EMC

Parallel test results – 9 h RH

Bak20-Op20 rgn0, humidity rms 6h fcst 2008-01-09 thru 2008-05-09 (matched)
 Bak20 rgn0, humidity rms 6h fcst 2008-01-09 thru 2008-05-09 (matched)
 Op20 rgn0, humidity rms 6h fcst 2008-01-09 thru 2008-05-09 (matched)

- 9n KH torecast
- Bak20 parallel RUC at GSD using same code in testing at EMC

Improved moisture soundings in parallel RUC

2008 Changes for oper RUC upgrade

- Assimilation
 - Use of radar reflectivity in RUC diabatic digital filter initialization in RUC model
 - Mesonet winds using mesonet station uselist
 - TAMDAR aircraft observations
 (TAMDAR impact parallel RUC tests at GSD)
- Model physics
 - RRTM longwave radiation eliminates sfc warm bias
 - Mod to Grell-Devenyi decrease areal coverage
 - Mod to RUC land-sfc model fresh snow density nighttime temps over snow cover
- <u>Post-processing</u> add reflectivity fields, improved RTMA downscaling

RUC parallel web site:

http://www.emc.ncep.noaa.gov/mmb/ruc2/para

New observations assimilated -- RUC upgrade

RUC Hourly Assimilation Cycle

RUC Diabatic Digital Filter Initialization (DDFI)

Initial DFI in RUC model at NCEP - 1998 - adiabatic DFI Diabatic DFI introduced at NCEP - 2006

Diabatic Digital Filter Initialization (DDFI)

New - add assimilation of radar data

Radar reflectivity assimilation in RUC

Radar assimilation in RUC - winter storm example

Also, added simulated radar reflectivity field to RUC output

Overall effect of RUC radar assimilation

NSSL 12z 3-h accum. Precip.

Radar assimilation impact on 3-h precipitation skill scores

- Significant improvement in ETS and bias
- Spring daytime

(On RUC assimilation of TAMDAR data) - AMDAR and TAMDAR definitions

- "AMDAR" (Automated Meteorological Data and Recording) – are automatically sent from commercial aircraft, mostly large jets
- "TAMDAR" (Tropospheric AMDAR) automatic reports from (currently) ~50 turboprops flying regionally in the US Midwest
 - Provided by AirDat LLC
 - Agreement between Northwest Airlines (Mesaba regional subsidiary) and AirDat LLC
 - New agreement between NWS/FAA and AirDat for use of TAMDAR

Aircraft coverage is limited to major hubs below 20 Kft, (without TAMDAR)

05-Jun-2007 00:00:00 -- 05-Jun-2007 23:59:59 (287984 obs loaded, 102442 in range, 9337 shown)

NOAA / ESRL / GSD Altitude: -1000 ft. to 20000 ft.

Good w and Tinot-TAMDAR

Below 20 Kft, with TAMDAR – better regional coverage in the Midwest

05-Jun-2007 00:00:00 -- 05-Jun-2007 23:59:59 (287984 obs loaded, 112138 in range, 11213 shown)

NOAA / ESRL / GSD Altitude: -1000 ft. to 20000 ft.

Good w and T

3h Fcst errors – RUCdev (no TAMDAR), RUCdev2 (w/ TAMDAR)

<u>TAMDAR – regional aircraft</u> <u>with V/T/RH obs</u> GSD impact study with RUC parallel cycles

- 2005-2007 (ongoing)
- 10-30% reduction in RH, temperature, wind fcst error w/ TAMDAR assimilation

Changes for oper RUC upgrade

- Assimilation
 - Use of radar reflectivity in diabatic DFI in RUC model (also, hydrometeor assimilation component)
 - Mesonet winds using mesonet station uselist
 - TAMDAR aircraft observations (TAMDAR impact parallel RUC tests at GSD)
 - Higher obs error for moisture, wind observations

Model physics

- RRTM longwave radiation eliminates sfc warm bias
- Mod to Grell-Devenyi decrease areal coverage
- Mods to RUC land-sfc model
 - fresh snow density nighttime temps over snow cover
 - limit on melting rate- allows warmer 2m temps

Post-processing

- add reflectivity fields, fixed land-sfc fields (as in NAM, GFS)
- improved RTMA downscaling

RRTM Longwave Radiation in RUC Upgrade Effect on 2-m temperature forecasts

Much decreased warm bias near surface

1-month comparison 14 May -13 June 07 Eastern US only

RUC oper – Dudhia LW

RUC para - RRTM LW

2-m temp bias (obs – forecast)

12h fcst – valid 09z 30 Oct

Better 2m temp forecast From para RUC w/ RRTM LW

Grell-Devenyi Convection

Changes to address recent issues

Reduce weight given to Arakawa-Schubert closure Result: Reduces the high spatial coverage bias of small amounts

Use smaller depth for cap adequate to deny convective initiation

Result: convection starts later in diurnal cycle

Changes for oper RUC upgrade

- Assimilation
 - Use of radar reflectivity in diabatic DFI in RUC model (also, hydrometeor assimilation component)
 - Mesonet winds using mesonet station uselist
 - TAMDAR aircraft observations (TAMDAR impact parallel RUC tests at GSD)
 - Higher obs error for moisture, wind observations
- Model physics
 - RRTM longwave radiation eliminates sfc warm bias
 - Mod to Grell-Devenyi decrease areal coverage
 - Mods to RUC land-sfc model
 - fresh snow density nighttime temps over snow cover
 - limit on melting rate- allows warmer 2m temps
- Post-processing
 - add reflectivity fields, fixed land-sfc fields (as in NAM, GFS)
 - improved RTMA downscaling

Remaining tests

- EMC testing – warm season

<u>Preliminary evaluation of technical aspects of implementation</u> (assumed to be computational/NCO/resource issues)

- None yet
- No increase in run time anticipated
- Radar reflectivity processing ready to be JIF'd

Downstream impacts, product changes

- 6 additional 2-d fields in isobaric output files
- 4 additional 2-d fields in native output files
- correction to GRIB identifiers for a few fields